Disjoint hamiltonian cycles in bipartite graphs
نویسندگان
چکیده
منابع مشابه
Disjoint hamiltonian cycles in bipartite graphs
Let G = (X, Y ) be a bipartite graph and define σ 2(G) = min{d(x) + d(y) : xy / ∈ E(G), x ∈ X, y ∈ Y }. Moon and Moser [5] showed that if G is a bipartite graph on 2n vertices such that σ 2(G) ≥ n + 1 then G is hamiltonian, sharpening a classical result of Ore [6] for bipartite graphs. Here we prove that if G is a bipartite graph on 2n vertices such that σ 2(G) ≥ n+ 2k− 1 then G contains k edge...
متن کاملDisjoint Hamiltonian cycles in graphs
Let G be a 2(k + I)-connected graph of order n. It is proved that if uv rJ. E(G) implies that max{d(u), d(v)} ?: ~ + 2k then G contains k + 1 pairwise disjoint Hamiltonian cycles when c5 (G) ?: 4k + 3. 1 .. Introduction All graphs we consider are finite and simple. We use standard terminology and notation from Bondy and Murty [2] except as indicated. Let G = (V(G), E(G)) be a graph with vertex ...
متن کاملDisjoint Hamiltonian Cycles in Recursive Circulant Graphs
We show in this paper that the circulant graph G( 2”‘, 4) is Hamiltonian decomposable, and propose a recursive construction method. This is a partial answer to a problem posed by B. Alspach. @ 1997 Published by Elsevier Science B.V.
متن کاملDisjoint Cycles and Chorded Cycles in Graphs
Very recently, Bialostocki et al. proposed the following conjecture. Let r, s be two nonnegative integers and let G = (V (G), E(G)) be a graph with |V (G)| ≥ 3r + 4s and minimum degree δ(G) ≥ 2r + 3s. Then G contains a collection of r cycles and s chorded cycles, all vertex-disjoint. We prove that this conjecture is true.
متن کاملDisjoint chorded cycles in graphs
We propose the following conjecture to generalize results of Pósa and Corrádi Hajnal. Let r, s be nonnegative integers and let G be a graph with |V (G)| ≥ 3r + 4s and minimal degree δ(G) ≥ 2r + 3s. Then G contains a collection of r + s vertex disjoint cycles, s of them with a chord. We prove the conjecture for r = 0, s = 2 and for s = 1. The corresponding extremal problem, to find the minimum n...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Discrete Mathematics
سال: 2009
ISSN: 0012-365X
DOI: 10.1016/j.disc.2008.10.026